Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37422443

RESUMO

As the association of denitrification with global warming and nitrogen removal from ecosystems has gained attention in recent decades, numerous studies have examined denitrification rates and the distribution of denitrifiers across different environments. In this minireview, reported studies focused on coastal saline environments, including estuaries, mangroves, and hypersaline ecosystems, have been analysed to identify the relationship between denitrification and saline gradients. The analyses of the literature and databases stated the direct effect of salinity on the distribution patterns of denitrifiers. However, few works do not support this hypothesis thus making this topic controversial. The specific mechanisms by which salinity influences denitrifier distribution are not fully understood. Nevertheless, several physical and chemical environmental parameters, in addition to salinity, have been shown to play a role in structuring the denitrifying microbial communities. The prevalence of nirS or nirK denitrifiers in ecosystems is a subject of debate in this work. In general terms, in mesohaline environments, the predominant nitrite reductase is NirS type and, NirK is found predominantly in hypersaline environments. Moreover, the approaches used by different researchers are quite different, resulting in a huge amount of unrelated information, making it difficult to establish comparative analysis. The main techniques used to analyse the distribution of denitrifying populations along salt gradients have been also discussed.


Assuntos
Desnitrificação , Microbiota , Sedimentos Geológicos , Estuários , Nitrito Redutases
2.
Microorganisms ; 9(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34442748

RESUMO

Microorganisms from the Halobacteria class, also known as haloarchaea, inhabit a wide range of ecosystems of which the main characteristic is the presence of high salt concentration. These environments together with their microbial communities are not well characterized, but some of the common features that they share are high sun radiation and low availability of oxygen. To overcome these stressful conditions, and more particularly to deal with oxygen limitation, some microorganisms drive alternative respiratory pathways such as denitrification. In this paper, denitrification in haloarchaea has been studied from a phylogenetic point of view. It has been demonstrated that the presence of denitrification enzymes is a quite common characteristic in Halobacteria class, being nitrite reductase and nitric oxide reductase the enzymes with higher co-occurrence, maybe due to their possible role not only in denitrification, but also in detoxification. Moreover, copper-nitrite reductase (NirK) is the only class of respiratory nitrite reductase detected in these microorganisms up to date. The distribution of this alternative respiratory pathway and their enzymes among the families of haloarchaea has also been discussed and related with the environment in which they constitute the major populations. Complete denitrification phenotype is more common in some families like Haloarculaceae and Haloferacaceae, whilst less common in families such as Natrialbaceae and Halorubraceae.

3.
Biomolecules ; 11(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356667

RESUMO

During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Enzimas/metabolismo , Haloferax mediterranei/metabolismo , Coenzimas/metabolismo , Simulação por Computador , Desnitrificação , Enzimas/química , Haloferax mediterranei/enzimologia , Modelos Moleculares , Nitrato Redutase/química , Nitrato Redutase/metabolismo , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Sinais Direcionadores de Proteínas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...